Generalizing observational study results: applying propensity score methods to complex surveys.
نویسندگان
چکیده
OBJECTIVE To provide a tutorial for using propensity score methods with complex survey data. DATA SOURCES Simulated data and the 2008 Medical Expenditure Panel Survey. STUDY DESIGN Using simulation, we compared the following methods for estimating the treatment effect: a naïve estimate (ignoring both survey weights and propensity scores), survey weighting, propensity score methods (nearest neighbor matching, weighting, and subclassification), and propensity score methods in combination with survey weighting. Methods are compared in terms of bias and 95 percent confidence interval coverage. In Example 2, we used these methods to estimate the effect on health care spending of having a generalist versus a specialist as a usual source of care. PRINCIPAL FINDINGS In general, combining a propensity score method and survey weighting is necessary to achieve unbiased treatment effect estimates that are generalizable to the original survey target population. CONCLUSIONS Propensity score methods are an essential tool for addressing confounding in observational studies. Ignoring survey weights may lead to results that are not generalizable to the survey target population. This paper clarifies the appropriate inferences for different propensity score methods and suggests guidelines for selecting an appropriate propensity score method based on a researcher's goal.
منابع مشابه
Causal Inference With General Treatment Regimes: Generalizing the Propensity Score
In this article we develop the theoretical properties of the propensity function, which is a generalization of the propensity score of Rosenbaum and Rubin. Methods based on the propensity score have long been used for causal inference in observational studies; they are easy to use and can effectively reduce the bias caused by nonrandom treatment assignment. Although treatment regimes need not b...
متن کاملPropensity Score Methods in Nursing Research: Take Advantage of Them but Proceed With Caution.
Intervention research on health outcomes is important to advancing the nursing science. Using randomized controlled trials (RCTs) to estimate intervention (or treatment) effects is optimal for this purpose. Unfortunately, for practical or ethical reasons, RCTs are often not feasible, and thus, researchers often rely on observational or non-RCT data to estimate treatment effects. Such practice p...
متن کاملPropensity score matching and complex surveys
Researchers are increasingly using complex population-based sample surveys to estimate the effects of treatments, exposures and interventions. In such analyses, statistical methods are essential to minimize the effect of confounding due to measured covariates, as treated subjects frequently differ from control subjects. Methods based on the propensity score are increasingly popular. Minimal res...
متن کاملAn evaluation of exact matching and propensity score methods as applied in a comparative effectiveness study of inhaled corticosteroids in asthma
BACKGROUND Cohort matching and regression modeling are used in observational studies to control for confounding factors when estimating treatment effects. Our objective was to evaluate exact matching and propensity score methods by applying them in a 1-year pre-post historical database study to investigate asthma-related outcomes by treatment. METHODS We drew on longitudinal medical record da...
متن کاملAn Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing score: conditional on the propensity score, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Health services research
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2014